Monsieur le Professeur, merci beaucoup pour cet espoir que vous nous donnez. Je souhaite savoir si l'accélérateur laser pourrait être développé pour l'hôpital ou un centre de radiothérapie, par exemple à titre expérimental. Comment un hôpital pourrait-il y accéder ?
Professeur Gérard Mourou. - Il s'agit de l'un de mes thèmes de recherche actuels sur la lumière extrême. L'objectif est de pouvoir développer des systèmes de protons avec une énergie de 200 à 300 MeV.
Je laisse Sydney Galès expliquer pourquoi la radiothérapie par proton est très intéressante par rapport aux électrons et aux rayons X.
Professeur Sydney Galès. - A Orsay, j'ai fait ma thèse sur un accélérateur de protons construit par Joliot-Curie en 1956. En 1993, cet accélérateur de protons de 200 MeV a été confié pour un franc symbolique à l'hôpital Curie. Aujourd'hui, c'est un centre de proton-thérapie traitant des milliers de patients atteints du cancer. Il s'agit d'un ensemble mesurant quelques centaines de mètres carrés au sol, mais créé à partir de la recherche fondamentale pour un franc symbolique. Ces protons de 200 MeV ont la bonne énergie pour traverser l'ensemble du corps, quelle que soit la localisation de la tumeur. Ces particules déposent leur énergie à l'endroit qui correspond à leur énergie finale, à la différence des rayons X ou des rayons Gamma, qui déposent leur énergie depuis l'entrée jusqu'à la tumeur. Ce faisant, ils créent des effets secondaires inutiles, que nous savons aujourd'hui combattre.
En France, deux centres de proton-thérapie sont installés, l'un à Orsay, l'autre à Nice. Un centre de carbone-thérapie est en cours de création à Caen. Cette technologie est meilleure que la proton-thérapie, car les carbones sont plus efficaces pour détruire les cellules cancéreuses qu'un proton. Les machines de proton-thérapie de 200 MeV sont aujourd'hui fabriquées par IBA, une firme belge créée par un physicien, et vendues pour environ 40 à 50 millions d'euros. Ces machines d'une taille immense, représentent actuellement le nec plus ultra de la technologie. L'impact, dans le futur, des possibilités évoquées par Gérard Mourou, améliorera ces systèmes en coût, en surface et en gestion. Encore faut-il que nous parvenions à fabriquer un prototype, et que nous le démontrions.
Pour répondre à votre question, nous voyons en effet un avenir pour cette technique à l'hôpital. En tout état de cause, pour guider les particules à l'endroit de la tumeur, il est nécessaire de les placer, au sortir de l'accélérateur, dans des énormes ensembles magnétiques pour les orienter en angle et en précision. Ces ensembles magnétiques sont très lourds à régler du point de vue mécanique. C'est pourquoi l'approche laser à partir de la lumière serait beaucoup plus simple et moins coûteuse.